Maximum-norm stability of the finite element Stokes projection
نویسندگان
چکیده
We prove stability of the finite element Stokes projection in the product space W 1,∞(Ω) × L∞(Ω), i.e., the maximum norm of the discrete velocity gradient and discrete pressure are bounded by the sum of the corresponding exact counterparts, independently of the mesh-size. The proof relies on weighted L estimates for regularized Green’s functions associated with the Stokes problem and on a weighted infsup condition. The domain is a polygon or polyhedron with a Lipschitz-continuous boundary, satisfying suitable sufficient conditions on the inner angles of its boundary, so that the exact solution is bounded in W 1,∞(Ω)× L∞(Ω). The triangulation is shape-regular and quasi-uniform. The finite element spaces satisfy a super-approximation property, which is shown to be valid for commonly used stable finite element spaces. Résumé: Nous démontrons la stabilité dans W 1,∞(Ω) × L∞(Ω) de l’approximation par éléments finis du problème de Stokes, i.e., la norme du maximum du gradient de la vitesse et celle de la pression, calculés par des méthodes d’éléments finis usuelles pour discrétiser le problème de Stokes, sont bornées indépendemment du pas de la discrétisation. La démonstration est basée sur des estimations à poids dans L pour des fonctions de Green associées au problème de Stokes et sur une condition inf-sup à poids. Le domaine est un polygone ou un polyèdre à frontière Lipschitz dont les angles intérieurs satisfont des conditions suffisantes convenables pour assurer que la solution exacte est aussi bornée dans W 1,∞(Ω)× L∞(Ω). La triangulation est uniformément régulière.
منابع مشابه
Maximum-norm stability of the finite element Ritz projection with mixed boundary conditions
In this paper we prove that finite element discrete harmonic functions with mixed Dirichlet and Neumann boundary conditions satisfy a weak (Agmon-Miranda) maximum principle on convex polygonal domains. Using this result, we establish the stability of the Ritz projection with mixed boundary conditions in L∞ norm up to a logarithmic term.
متن کاملMaximum-norm stability of the finite element Ritz projection under mixed boundary conditions
As a model of the second order elliptic equation with non-trivial boundary conditions, we consider the Laplace equation with mixed Dirichlet and Neumann boundary conditions on convex polygonal domains. Our goal is to establish that finite element discrete harmonic functions with mixed Dirichlet and Neumann boundary conditions satisfy a weak (Agmon-Miranda) discrete maximum principle, and then p...
متن کاملAn Absolutely Stabilized Finite Element Method for the Stokes Problem
An absolutely stabilized finite element formulation for the Stokes problem is presented in this paper. This new formulation, which is nonsymmetric but stable without employment of any stability constant, can be regarded as a modification of the formulation proposed recently by Hughes and Franca in [8]. Optimal error estimates in L2-norm for the new stabilized finite element approximation of bot...
متن کاملMaximum-norm stability and maximal Lp regularity of FEMs for parabolic equations with Lipschitz continuous coefficients
In this paper, we study the semi-discrete Galerkin finite element method for parabolic equations with Lipschitz continuous coefficients. We prove the maximumnorm stability of the semigroup generated by the corresponding elliptic finite element operator, and prove the space-time stability of the parabolic projection onto the finite element space in L∞(QT ) and L p((0, T ); Lq ( )), 1 < p, q < ∞....
متن کاملLocal projection finite element stabilization for the generalized Stokes problem
We analyze pressure stabilized finite element methods for the solution of the generalized Stokes problem and investigate their stability and convergence properties. An important feature of the method is that the pressure gradient unknowns can be eliminated locally thus leading to a decoupled system of equations. Although stability of the method has been established, for the homogeneous Stokes e...
متن کامل